
AD-A009 402

DESIGN AND TESTING OF A GENERALIZEDREDUCED GRADIENT CODE FOR NONLINEAROPTI'MIZATION

Leon S. Lasdon, et al

Case Western Reserve University

Prepared for:

Office of Naval Research

March 1975

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE

T+

? -

*;+ I

I 139130

DESIGN AND TESTING OF A GENE .WLIZED REDUCED GRADIENT CODE
U IFOR NONLINEAR OPTIMIZATION

) :I

I

J by

Leon S. Lasdon
Allan D.Waren
Arvind Jain

Margery W. Ratner

I This report was prepared as part of the activities of the Department of
Operations Research, Schpol of Management, Case Western Reserve Univprsity, partially
supported under ContactO0014 - 75 - C - 0240 with the office of Naval Research.
Reproduction in whole or part is permitted for any purpose by the United States
Goverment.

Technical Memorandum No. 353

March 1975

I

Index

Section -Page
I. Introduction

2. brief Description of Generalized
* ! ~ IReduced Gradient Algorithms 2

3. System Overview 5

4. Subroutines Comprising the Code 6

3 5. Subroutine Flow Charts and Dc-scriptions 9
£(a) GRG

(b) DMINRG
(c) REDOBJ
(d) CONSBS

6. Changes in the Algorithm....... 35
(a) PARSH
(b) GRG

(c) DMINRG
(d) REDOBJ

i (e) CONSBS

7. Computational Results 39
* (a) Comparison with Previous GRG Code

(b) Comparison with Interior Penaltv Code,
8. Future Work.......

1, 42

9. References 45

I

II°

-. - .. -.4 4:

1 1. Introduction

Generalized Reduced Gradient (GRG) Methods are algorithms for solving

nonlinear programs of general structure. An earlier paper 1--' discussed the

basic principles of GRG and presented the preliminary design of a GRG

computer code. This paper describes a modified version of that initial

design, including the experiences that led to the modifications. This

paper also is intended to serve as partial system documentation. The

code is compared computationally with an interior penalty function code,

and anticipated future work on the algorithm is outlined.

;*

* .

I"

3.

I.

p "= 2. Brief Description of Generalized Reduced Gradient Algorithms

S IGeneralized Reduced Gradient (GRG) Algorithms solve nonlinear programs

of the form

i minimize M

subject to gi(X) 0, i=, NEQ

Bi)0 < g (X) < UB(N+i), i=NEQ+l , M ()

[,: LB(i) < Xi < UB(i), i=l, N

where X is a vector of N variables. NEQ, the number of equality constraints,

may be zero. The functions g1 are assumed differentiable.

*, There are many possible GRG algorithms. Their underlying concepts

are described in references .1- 3 This paper briefly describes the

version currently implemented in our code.

The user submits the problem in the above form. It is converted to

the following equality form by adding slack variables XN+,..., XN+M:

4 minimize gM+l X)

• . subject to g(X) - XN+i = 0, iil, M

LB(i) < Xi < UB(i), i-l, N+M (2)
where

LB(i) = UB(i) = 0, i=N+l, N+NEQ

LB(i) 0 i=N+NEQ+l, N+M

- These last two equations are the bounds for the slack variables. The variables

XI,..., XN will be called "natural" variables.

:1 3

Let X satisfy the constraints of (1), and assume that NB of the gj

constraints are binding (i.e. hold as equalities) at X. A constraint gi is

taken as binding

if g - UB(N+i)I < EPNEWT

I or Igi - LB(N+i)J < EPNEWT

1 i.e. if it is within EPNEWT of one of its bounds. The tolerance EPNEWT is

one of the most critical parameters in the code. It can be set by the user,

and has a default value of 10-4 .

GRG uses the NB binding constraint equations to solve for NB of the

natural variables, called the basic variables, in terms of the remaining

N-NB natural variables aLJ the NB slacks associated with the binding constraints.

These N variables are called nonbasic. Let y be the vector of NB basic

variables and x the vector of N nonbasic variables, with their values

corresponding to X denoted by (y, x). Then the binding constraints can belip
written.

F

g(y'x) - 0 (3)

a' where g is the vector of NB binding constraint functions.* The basic

variables must be selected so that the NB by NB basis matrix

B = (ag1/ayj)

is nonsingular at X. Then the binding constraints (3) may be solved

(conceptually at least) for y in terms of x yielding a function y(x), valid

for all (y,x) sufficiently near (y,x). This reduces the objective to a

*The definitions of g are extended here to include the slacks.

4

I function of x only

g,+ 1 (y(x),x) = F(x) (4)

and reduces the original problem (at least in the neighborhood of (y,x)),

to a simpler reduced problem

minimize F(x)

s subject to k<x < u

' where k and u are the bound vectors for x. The function F(x) is called the

reduced objective and its gradient, VF(x), the reduced gradiant.

I This GRG code solves the original problem (1) by solving (perhaps only

partially) a sequence of reduced problers. The reduced problems are solved

by a gradient method. At a given iteration with nonbasic variables x

and basic variables y, B-1 is computed, and VF(x) is evaluated as follows:

' (g+1/3y)TB

aF/axk = aFhl/3Xk - u Dg/Dx k

A search direction d is formed from VF(x) and a one dimensional search is

initiated, whose goal is to solve the problem

minimize F(x + ad).
a> 0

* This minimization is dore only approximately and may be terminated for a

variety of reasons (see section 5). It ts accomplished by choosing a

sequence of positive values {aI,a 2 ,...} for a. These are generated by

subroutine DMINRG, described in section 5. For each value ai, F(x+ id)

must be evaluated.By'(4), this is equal to gM1 (y(+a1id, x+ id), so the basic

1 5

variables y(x+aid) must be determined. These satisfy the system of equations

g(y, x+aid) =0

This system is solved by a variant of Newtons method. If Newtons method

converges, and no constraints are violated at the solution, a new a value

- is selected and the one dimensional search process continues. If any

gi constraints or any bounds on basic variables y are violatedthe code

determines a new a value such that at least one such new constraint or variable

is at its bounds and all others are satisfied. If certain conditions are

met (see description of subroutine DMINRG, section 5), the new constraint is

14 added to the set of binding constraints, the one dimensional search is

terminated, and solution of a new reduced problem begins.

3. System Overview

The GRG code described here is composed of a main program and a number

of subroutines. It is written in FORTRAN IV and is currently operative on

a UNIVAC 1108 at Case Western Reserve University and an IBM 370-145 at

I Cleveland State University, Et uses double precision arithmetic.

*System input is described in the user documentation. The only user

I. supplied subroutine required is GCOMP, which ccmputes the functions gi for

given X. The code requires first derivatives of the functions gi, but these

may be computed by a system subroutine PARSH using finite difference

approximations. Alternatively, the user may supply a subroutine PARSH which

computes first derivatives by analytic formulas or other means.

The code operates in two phases. If the initial vector X does not

satisfy one or more of the gi constraints, phase I finds an initial feasible

point or determines that there is none. This is done by minimizing a phase I

j6

I objective function, which is the sum of the constraint violations.

Phase II starts with an initial feasible point and attempts to minimize the

iser-supplied objective gM+l. As with any other NLP algorithm any solution

found may oe only a local rather than a global minimum. In phase I, this

means that a feasible point may not be located even if one exists. A popular

procedure, if local optima appear to be a problem, is to try a variety of

starting points. If the same final point is obtained, it is likely

that this is a global solution. A suggested algorithm for generating

alternative starting points is described in reference 4

T4. Subroutines Comprising the Code

The current GRG code is composed of a main program, MAINRG, and 11

subroutines. These are described briefly in the following subroutine

dictionary.I.

I

!7

Subroutine Dictionary

I Subroutine Function Calls Called
Name by

1. MAINRG Not a subroutine. Reads, edits, GRG
and prints input. SUMRY

2. SUMRY Optional user supplied subroutine --- MAINRG
which prints additional solution
output, beyond that provided by
GRG

3. OCOMP User supplied subroutine. Given --- GRG
current X vector, computes vector NEWTON
of M+l function values G, where
G(l),..., G(M) are constraint
function values and G(M+l) is the

*i objective

4. PARSH Given current X and G vectors, If not
computes array GRAD(M+I, N), user CONSEf
whose (I,J) element is the supplied,
partial derivative of G(I) with calls

- respect to X(J). May be user GCOMP
supplied. If not, there is a
system subroutine PARSH which
computes GRAD by fo whard

{ difference approximation

5. GRG Controls main iterative loop. GCOMP MAINRG
" Computes initial BINV and CONSBS

search direction. Calls one REDGRA
dimensional search subroutine DMINRG
DMINRG. Tests tor optimality,
updates H matrix

6. DMINRG Performs one dimensional REDOBJ GRG
search

CONSiS

7. REDOBJ Computes values of basic NEWTON DMINRG
variables for given values of GCOMP
nonbasics by calling NEWTON. CONSBS
Takes action if NEWTON doesn't PH1OBJ
converge. Checks for constraint
violations. If any are violated,
finds feasible point where some
initially violated constraint is
binding and others satisfied.

8

J Subroutine Dictionary - p.2

Subroutine Function Calls Called
Name by

* 8. NEWTON Uses Newtons Method to compute GCOMP REDOBJ
* values of basic variables for

given values of nonbasics. If
convergence not achieved, setsUflag and returns

9. CONSBS Cotuoutes Basis Inverse, BINV PARSH CRG
SI REDOBJ

DMINRG

1 10. REDGRA Given BINV and GRAD, computes GRG
Lagrange multiplier vector U,
and reduced gradient of either
phase I or phase II objectives,
GRADF

11. P1lOBJ If any constraints are violated, REDOBJ
.. computes phase I objective,

equal to the sum of constraint
-" violations. Stores this as

G(M+I), stores original G(M+l)

as TRUOBJ.

12. TAUC. Computes tangent vector v as v = GRG

-B- 1 (ag/3x)d

'"

9

5. Subroutine Flow Charts and Descriptions

The flow charts in this section are in aggregated rather than detailedLI
form. Their purpose is to describe overall program logic. However, they

j correspond fairly closely to the ac:,al FORTRAN code. In particular, all

array, variable, and subroutine names used arethe same as in the code.

ll

i

o

L
!

10

Subroutine GRG

The subroutine begins by calling CONSBS to invert the initial basis. If

NCAND is not zero in block 1, the user has specified an initial candidate

list for CONSBS. Otherwise, all variables are candidates. The arrays

IABOVE and IBELOW in block 2 are the sets of indices of constraints which

viLilate their upper and lower bounds respectively.

The Broyden - Fletcher - Shanno (BFS) variable metric aleorithm 181 is

used to generate the search direction d. This method uses an N x N matrix, H.

in block 3, H is ir'tialized to a diagonal matrix with diagonal element zero2 if the ith nonbasic variable is at a bound and unity otherwise. The test in

block 4 is true if either of two optimality tests are passed. The first test

checks if the following conditions are met;

for i = 1,N but xi not a slack variable

for an equality constraint

x(i) = LB (i) =4 GRADF(i) > -EPSTOP

x(i) = UB (i) 4i GRADF(i) < EOSTOP

LBW < x(i) <UB(i) pIGRADF(i) < EPSTOP

The quantities xi are the current nonbasic variables and GRADF(i) is the

ith component of the reduced gradient, (see section 2). This tests whether the

Kuhn-Tucker optimality conditions [7] are satisfied to within EPSTOP, a small positive

number which can be controlled by the user. The slack variables for equality

constraints (i.e. the variables X(N+l) to X(N-NEQ)) are excluded from the test

because they must be zero in any feasible solution.

I

The second optimality test checks if the condition

F JABS(FM - OBJTST) < EPSTOP * ABS(OBJTST)

is satisfied for NSTOP consecutive iterations. In the above, FM is the

current objective value and OBJTST is theObjective value at the start of the previous

-one dimensional search.

There are two tests for resetting H in block 5. The first tests whether

the scalar product

E d(i) * GRADF(i)
i

is negative. If not, the search direction d(i) will not yield an immediate

decrease in the objective, and'i must be reset. This condition can occur

due to numerical error in computing H or to inaccuracies in the one dimensional

search. The second test checks if

max Id(i) I < 10-6

i.e if d is too small. Neither of the latter two tests can be true immediately

after H is reset.

In block 6, AI.MAX is the largest value of a for which each component of

x + ad satisfies its bounds. The tangent vector, V, in block 7 is used to

compute initial values for the basic variables in subroutine REDOBJ.

The variable IFLAG in block 8 is set to 3 either in REDOBJ, if phase I

ends, or in DMINRG, if a new binding constraint is to be added to the basis.

12

H In either case a new reduced problem is to be solved, so H is reinitialized

and the entire procedure begins again. IFLAG is set to 6 either in

DMINRG, if too many NEWTON iterations have been taken, or in REDOBJ,

if NEWTON fails to converge. A new one dimensional search is initiated

but the reduced problem remains the same, so H is not reset.

In block 10, page, 2, the binding constraints are checked to see if any have

become strictly satisfied during the one dimensional search. If so, a new,

smaller basis inverse is constructed in CONSBS, and a new reduced problem

I. solution begins.

If the one dimensional search ends with IFLAG = 0, corresponding to

an unconstrained minimum being located along the search direction d, H is

updated and a new iteration begins. The update used depends on whether or

not any nonbasic variable has reached a bound, i.e. if the step size, ALPH,

is equal to ALFMAX. The updating formulas in blocks 11 and 12 are given

in reference 15]. Since H is a symmetric matrix, only the diagonal and

super-diagonal elements are needed, and these are stored in a linear array

H in row order.

L , . *. *. ** , . .**; * -* ,4.-'.'.. _. . - , '-4 -, --..o, P .4. . --A A' -, ,

I13

Subroutine GRG - p. 1

" I
Start +__

NCAND-0 N

ICAND J, ,_ NCAND N

CALL CONSBS
-D2

L Compute arrays IABOVE, IBELOW..L

If Phase I, Call PHIOBJ

I nitialize H matrix

3

_CALL REDGCRA

Y Print solution
Current point optimal output

N
RETURN

d -H ~H GRADF

If any nonbasic variables should be
released from their bounds, release them
by setting diagonal elements of H
to unity

--< _ should H be reset

2- page
2

RK-i 14

Subroutine GRG -p.* 2

20

Compute ALFMAX

Compute tangent vector, V

LCALL DMINRG (T, IPR, IFLAG, ALFMAX)

IT

IFIAG 6 - 3)

Any binding :onstraints . ICAND +{, .*N)
strictly satisfied-

CALL CONSBS

1 N
_'

GG GRD

updte

I 15

Subroutine DMINRG

Subroutine GRG provides search directions for the one dimensional search

I subroutine, DMINRGin which the variables of the problem are assigned new values.

This subroutine finds a first local minimum for the problem

minimize F(x + ad)
a

The direction d is always a direction of descent, i.e.

dTVF (x) < 0

T This subroutine searches for three a values, A, B, and C, which4
- atisfy

0< A< B < C

F (x + Ad) > F (x + Bd)

and

F (x + Cd) > F (x + Bd)

Then the interval [A,C] contains a local minimum of F (x + ad). In block 11

of the flow chart, a quadratic in a is passed through A, B, and C, w-ith itc

minimum at D. The point D is taken as an estimate of the optimal a and a return

is made.

In finding (A,B,C) the choice of initiol step size, % , (block 1, page 1),

is important. With Goldfarbs algorithm 6r other variable metric methods, a0

is set equal to the optimal a value from the previous searLh except when this

causes too large a change in the variableE. The theoretical basis for this is that,

as a variable metric converges, the optimal a values should converge to 1, the

optimal step size for Newton's Method. Hence the previous optimal step is 1 good

approximation to the current one. This must be modified when the method is restarted,

for example when a new constraint is encountered or the basis is changed, since thei

Ran optimal step much less than unity is generally taken. Hence, we require that the

-3
change in any nonbasic variable larger than 10 in absoluze value not exceed .05

16

-3times its value, while the change in any variable smaller than 10 in absoluteI 1
value cannot exceed 0.1. If the largest a value meeting these conditions is a

and a. is the step size found by DMINRG at interation i, then a is equal toO0

a = mill (a*il a)I °
if the previous search terminated with an interpolation, and a = a otherwise.0

I The loop 2- 3 - 4 - 5 halves the step size until a value FB < FA is achieved,

or intil LOOPCT - 10. The variable iFLAG in block 3 is set In REDOBJ - to 3 if a

new constraint or bound on basic variable was encountered and a new basis was

constructed, and to 6 if either NEWTON call in REDOBJ did not converge.

1The test in block 6 of the one dimensional search flow chart is false only if

Tthe step size has been halved at least once in 2 - 3 - 4 - 5, in which case K1 is the

funct~op qalue corresponding to C. It also insures that the subroutine will cut

back the subroutine will cut back the step size if a large function value is returned

by REDOBJ. This is used to force a cutback when the Newton algorithm in REDOBJ does

30
not converge and an improved point has not been found, by setting FB to 10

The loop 7 - 8 - 9 - 10 doubles the step size each time until the points A, B,

C bracket the minimum. The test in block 7 is true if the NEWTON algorithm in REDOBJ

took more than 5 iterations to converge. Experience has shown that, in this case,

the next step with C - 2B is almost certain not to converge in the limit of 10

iterations. This test, and related logic, has reduced overall cowputational effort

significantly - see sections 6 and 7.

I Subroutine DMINRG also includes logic to insure that the step taken is no larger

than ALFMAX. To simplify the exposition, this logic has not been included in theSI
flow chart. Before returning, DMINRG picks up the best objective value encountered

during the search. This is done in block 12, page 2. The quantities XBEST, GBEST,

ALFBST are computed in subroutine REDOBJ, which will now be described.1

F 17

.~AFA

A 4 L oED4 ,Kl-wA

4,P
* LI4L~±4k*A44C

~~~1+_

_____E~ ____
___P 

7+

k~f~- ,f/

/oc c7 A/0



2 ~18

PI2

rAF
A i _ 0_

4%' oTl u

A.' C

.X~~~CALLA Ch G PG~6A LP.F



19

Subroutine REDOBJ - Introduction

This subroutine (REDuced OBJective) is equivalent to the subroutine

which evaluates the objective function in a procedure for unconstrained

minimization. However, it is much more complicated. REDOBJ is called from

the one dimensional search subroutine DMINRG. Prior to the call to REDOBJ,

DMINRG chooses a value for the step size a, and computes new values of the non-

basic variables, x, equal to x + ad (d is the search direction). Then

T REDOBJ is called. It attempts to compute the corresponding values of the

basic variables, by solving the system of NB nonlinear equations

gi ky, x + ad) = 0 iEIBC

for the NB basic variables y, where IBC is the index set of binding

constraints. This system is solved by subroutine NEWTON.

- If a solution is obtained then all of the constraints are checked to

see tha none are violated. If not, and if no new constraints are binding

then the current objective value is compared to the previous best value

If it is lower, the current values of the variables, constraintst

objective and step size are stored as XBEST, GBEST and ALFBST

before returning to the calling subroutine (DMINRG).

If the pseudo-Newton algorithm (NEWTON), used to solve for the basic

variables in terms of the nonbasics, does not converge then one of two

alternatives is taken. If at least one improved point had been iund during

the linear search process in DMINRG, then the best such value found is

accepted as the optimum in this search direction and the search terminated.

I If no improved point had been found (i.e. ALFBST = 0) then the objective

30function is assigned a large value (G(M + 1) = 10 ) to force the linear search

process to cut back the step size ALPH and to try again.

If, after the NEWTON process has converged, one of the constraints is



1 20

violated then REDOBJ attempts to find the largest value of ALPH such that

5 no cot.straints are violated and at least one new constraint is binding.

If successful, control is returned to DMINRG where a new search is initiated.

I If not su:cessful then the same action is taken as if NEWTON did not converge.

I
1



21

I REDOBJ -Detailed Description

IGiven the new values for the nonbasic variables x in terms of their previous

values x, the current search direction d and a step size a then the new values for the

basic variables y are determined by solving the system of non-linear equations

gi (y ' x + ad) = 0 iIBC

I where IBC is the index set of binding constraints. As in [2] and (3] this is

accomplished, in subroutine NEWTON, using the pseudo-Newton algorithm

y -t l - B_(X) y x + ad) t= 0,1,2, ...
Yt+l Bt B I ()g(to

where gB is the vector of binding constraints. The algorithm is called pseudo-Newton

because B-1 is evaluated once at the initial point of the search, R, instead of being re-

evaluated at each step of the algorithm, as in the standard Newton method.

An initial estimate of the solution is computed by linear extrapolation in

block 1 on page 1 of the REDOBJ flow chart. Consider the tangent plane to the

constraint surface at X. This is the set of all vectors (a,b) satisfying

(ag/ay)a + (Dg/ax) b = 0

where all partial derivative matrices are evaluated at X. In GRG, the change in

x, b, is given by

b = ad

The corresponding vector a is called the tangent vector, V. Since any scale

factor multiplying V is unimportant, we may as well take a 1, yielding

V - (ag/ay) - (3g/x)d

In our program, V i, computed at X, the initial point of the one dimensional search

in block 7, pg. 2, of subroutine GRG. In block 1 of REDOBJ, this vector is used

to find initial values, y by the formula

J0



22

Yo = y + al V

3 Using these initial values, Newton finds the feasible point X1 . Then, at

XI, V is not recomputed. The old V is used, but emanating now from XI, to

yield the next set of initial values as

Yo = Yl + (a2 - ai)v

Using these, Newton finds a new point X2. This procedure is repeated until

T Newton fails to converge or until the one dimensional search is over.

Newton is considered to have converged 12' the condition

NORMG = max Igi (Xt )I < EPNEWT

iEIBC

is met within ITLIM interations. Currently EPNEWT = 10- 4 and ITLIM = 10.

If NORIG has not decreased from its previous value (or the above condition

is not met in 10 iterations) Newton has not converged. In block 2, ALFBST

is the value of a at the best point found thus far in the one-dimensional

search. If ALFBST = 0, i.e. no better point has been found, the objective

is set to 1030 in block 3. This forces DMINRG to cut back the step size.

The Newton algorithm will converge if the step size is "small enough". If

ALFBST > 0, at least one improved objective value has been found by DMINRG,

so CONSBS is called and the search is terminated by setting IFLAG to 6 in

block 4.

Once Newton has converged, we check for constraint violations on page 2.

There are a number of reasons why the current step a may be too large;

(1) A strictly satisfied constraint (one with index in the set IRC)

may have violated an upper or lower bound.

(2) A constraint in ABOVE, the set of constraints initially violating

their upper bounds, may violate a lower bound.

(3) A consrrainit in IBELOW may violate an upper bound.



23

(4) A basic variable may violate a lower or upper bound.

If one or more of these cases hold, a is reduced -.o a value, ALFSTR, where

no constraints are violated and at least one new constraint is equal to a

J bound. To determine this constraint, an estimate is made of ALFSTR in block

6 for cases 1, 2, and 3. Linear interpolation between the current and

Tprevious values of the violated constraint is used. Case 4 is dealt with

in the same way in block 8. If none of the 4 cases holds (Y branch, block 9),

the test in block 10 checks if we are still in phase I (NABOVE is the number

of indices in IABOVE, the Fet of constraints violating upper bounds, and

similarly for NBELOW). If still in phase I (N branch, block 10) block 11

checks to see if all violated constraints are satisfied. If so, phase I ends

and a return is made.

any of the 4 cases holds, the log.c at the top of page 3 decides

whether case 4 or one of cases 1 - 3 is to be dealt with. Assuming cases

I - 3 as an example, we then wish to solve the system

gi (Y(a), x + ad)= 0, iEIBC

L (y ( a ) , x + ad) = 0

The Jacobian for this system is

B c

D4

where

D4 = 3gL/ay

w = (3gL/ 3x)Td

and c is an NB component column vector whose elements are (agi/ax)Td for

icIBC. Since J involves only adding a border to the current basis macrix,



24
.

I B, its inverse is easily computed if B- i is known. This is done in

block 13. The call to NEWTON in bJock 14 then attempts to solve the system.

If NEWTON falls to converge, the same logic as described previously iF;

3 applied. if it does converge, we return to page 2 to see if any of cases

1 - 4 still holds.

I This procedure for satisfying violated constraints terminates with

T the Y branch in block 9. If a basic variable has been set to one of its

bounds, its index is stored as LV1 in block 12, p. 3. In block 15, page 4 LV is

replaced by LVI. If both LV and NNEW are zero, the set of strictly

satisfied constraints is checked to see if any constraints in it are binding.

Then the best point io updated if necessary and a return is made.



25

i% -. 1-

II

* 1* '*'~'-- 3 rc 0

C -O\ "

AT



*1 26

r-

CtvI. C' ~'k \ A ~ V I N

9 ~~ ~ . I )j ~ r

* ~~ ~ ~ ~ C c 1 s'' . . W S I~

I'ly
iN11



27

teco~t lq 'b 5c VoSi',G.C b~t\1 OT

Yes - 11 No, -\\Avi-W Yes

CnoDCd~' o

peir1tluy leg,,-la reproduc:UOI



RI 28

VL

\IX .0.,0L

S.VIQ- *sc fm

VriD

V)(:z G

M~) ~~e



U 29

V ISubroutine CONSBS

This subroutine selects a set ot basic variables and computes the basis

U inverse, BINV. Its input is a list of indices of variables, the candidate

list ICAND. The outputs of CONSBS are (a) a new list of binding and

*: strictly satisfied constraint indices (b) a new list of basic variable

J Iindices and (c) the new basis inverse, BINV. In block 1 of the flow chart

the array IREM contains the list of rows of TAB which remain to be

- pivoted in. The subroutine operates in 2 modes, indicated by the variable

MODE. When MODE = 1, CONSBS will choose pivot columns from whatever

Icandidate list was input to it. If a basis inverse could not be constructed

- from columns in this candidate list, or if the original candidate list

L included all variables (NCAND - N, block 2), MODE is set to 2, and CONSBS

will choose pivot columns from the list of all admissible columns. A

column is admissible if it is not scheduled to leave the basis and if it has

not yet been pivoted in.

* .. The main loop of CONSBS begins at block 3. A pivot row is chosen as

in block 4. The choice of ISV in block 5 is motivated by the desire

#_.o have basic variables as far from their bounds as possible, so that fewer

basis changes will be required. The other criterion influencing the choice

of basic variables is -hat the basis matrix should be well-conditioned.

* We try to insure this by choosing as a prospective pivot column that index,

*I, in ISV yielding

max ITAB (IROW, I)l

ICISV

This is done in block 6. If the element chosen passes 2 tests we nivot

on it (block 8), transforming the Jacobian and entering that column into

BINV. The index of the column pivoted in is stored in the basic variable

list, IBV (block 7), and the



30

procedure is repeated for each binding constraint until either BINV

has been constructed (N branch, block 9) or the candidate list has been

Z exhausted (Y branch, block 10# page 2).

ii The two tests that a pivot element must pass are (a) its absolute

i value must be larger than EPSPIV (currently 10-6) and (b) the absolute

) value of the ratio of all other elemen:s in the pivot column to the

pivot element must be less than RTOL (currently 100). The first test

insures that we do not pivot on an element that is essentially zero, while- I
*the second protects against the generation of elements of large absolute

T value in BINV. Such values are symptomatic of ill-conditioned basis matrices.

It either test is failed while MODE - 1, we simply do not pivot in the

current row, and move on to the next one.

If, when mode 1 terminates, BINV has not yet been constructed, we

attempt to complete its construction by considering columns not in the

originalcandidate list. In block 11, page 2, the candidate list, ICAND, is

reset to the set of all remaining admissible columns, MODE is set to 2, and

we return to the start of the main iterative loop. If, in this second phase,

a pivot element fails the absolute value test, we temporarily mark all columns

in ISV inadmissible (by setting their indicator in the IGNORE array to 1, in

block 12, page 3) and choose a new ISV array. If, in mode 2, a column fails the

RTOL test (block 14, page 3), its IGNORE indicator is set to one. If all admissib]

matrix elements in a row fail one of these two tests (N branch, block 13, page 2)

we are forced to consider variables within EPBOUN of their bounds. This

is done in block 15, p.4. If all these fail the tests, the slack variable

corresponding to row IROW is entered into the basis.

1



, 31

Subroutine CONSBS - p. I

START

Initialize: ICT 0, IGNORE (I) -O, I I, N

F: " .... ....

Determine indices of binding and
I I strictly satisfied constraints

I NB = number of binding constraints

Store gradients of binding constraints in array TAB

- 4-

Sort. variables in order of increasing Z(J) where

Z(J) min (X(J) - LB (J)), (UB(J) - X(J))}

I ... . . . . . . . .
, IREM 4- (l,2,...,NB)

NREM + NB

LV O

Label variable leaving basis
inadmissible1 r

i page

2



32

Subroutine CONSBS - p. 2

W1.ADV~ N-~ MODE -

MODE 2 2

I, start of
main loop ...

2,'

ICT + ICT + 1

.............. 2:I M D.7r I ICT + 0

FOR I= 1,N, IGNORE (I) 0

NREM - number of rows not yet

1(iO) pivoted in

T IREM a lst of rows not yet
ICT > NREM- pivoted in

. . . . . .................." ICAND +  list of admissible
N variables

NCAND+ size of ICAND

IROW IREM (ICT) ...

Select (up to) 5 admissible candidate variables with IGNORE (I) = 0

which have Z(J)> EPBOUN and with largest values of Z(J). Store
indices in ISV. Let NSV number cf indices in ISV

NS - 0 MODE-l1 6 p. 4

!,2 p. 2

1 Scnn row IROW of TAB. From columns with indices in ISV,

pick one with element of largest absolute value. Let

I element value - PIV, column index - ICOL

4 p.3



33

~~~Subroutine CONSBS -p

-Y __ <_IPIVI > EPSPIV

II F

.

For each I in ISV set IGNORE (I) - 1

a .4A. 2i. ',....--'- >........."

For 1 1, NB but I # IROW, R(I) -TAB(I,ICOL)/PIV

R (I) > RTOL2p.fj "N+- MODE 12p.

I Store ICOL in list of basic variables, IBV, in IGNORE (ICOL) -1
S position IROW. Replace column ICOL of TAB by

I.
p..2...

Pivot on TAB (IROW, ICOL). Update all columns of TAB

.Any rows remaining to pivot in p. 2

Reorder columns of TAB 'Pith indices in basic variable list,
IBV, into first N8 columns of TAB. Order is as specified in
IBV. Since TAB and BINV occupy same storage locations (by
EQUIVALENCE statement) these columns comprise BINV

Construct index set of nonbasic variables

I.

m 34

! 2Subroutine CONSBS - p. 4

Find all admissible candidate variables which have IGNORE (I) 0
t "and Z(J) < EPBOUN. If none set PIV - 0. Otherwise, set PIV =

element of largest absolute value in these columns in row IROW.
Set ICOL to index of maximizing column

I
-PIV > EPSPIV 7 p. 3

N

Is variable leaving basis the y error

same as the slack in row IROW stop

.N

{ Enter slack in row IRON into BINV

I

ii

1. 35

4 ' 6. Changes in the Algorithm

I 7The subroutines of section 5 have been changed significantly from their

Vorginal versions, described in reference [1]. Here we discuss some of these changes

and give reasons for them.

Subroutine PARSH

A finite difference version of PARSH has been added. This computes partial

derivatives of gl,..,g, + i by simple forward differencing, using a constant increment

-4of 10 in each variable. It frees the user of having to code his own PARSH, a task

Twhich can require man - months of effort for some problems. In comparing solution

-. by using analytic and finite difference derivatives, little or no degradation in

accuracy or speed has been noted.

The form of the user - supplied PARSH has also been changed. Previously, the

code assumed that only the gradients of currently binding constraints would be computed

I by PARSH. Now, gradients of all constraints are computed. This significantly

simplifies the preparation of PARSH. The older version required that PARSH compute

the gradients of an nrbitrary subset of constraints, which is more complex to code

i" than simply computing all of them. The rest of the program is also simplified. No

distinction need now be made between finite difference and analytic derivatives;

previously, finite difference would compute all gradients, analytic only those for

binding constraints.

Subroutine GRG

The Broyden - Fletcher - Shanno (BFS) variable metric algorithm [8] has replaced

the Davidon - Fletcher - Powell [6] method. This was done because recent computational

experience indicates that BFS is the best of the variable metric algorithms. Reference

[9] shows that BFS is less sensitive to errors in the I dimensional search than DFP,

TI while [10] provides evidence that periodic restarting of BFS is undesirable. Hence

a simpler 1 dimensional search is now used, and the test in block 5 of GRG does not

I include resetting H periodically.

I

36

Subroutine DMINRG

The cubic interpolation section has been deleted. This followed the quadratic

interpolation (block 11), and fit successive cubics through 4 points until certain

stop criteria were met. It was removed because:

(1) In about 10 test problems, it was found that deleting the cubic interpolatio

J Iincreased solution effort little, if at all, and often decreased it. There are a
number of reasons for this. Foremost among them is the fact that, to compute the

I reduced objective F(x) exactly, the basic variables y(x) must be determined exactly,

i.e. each binding constraint must be exactly equal to zero. Of course this is

impossible in practice, and the binding constraints are only within EPNEWT of their

bounds, with the default value of EPNEWT currently equal to 10 . Hence F(x) is

computed significantly less accurately than if the problem were unconstrained, perhaps

only to 4 or 5 significant figures. With such noise in the function evaluation, cubic

interpolation rarely achieves improved functioai values.

(2) There is much evidence in unconstrained minimization that a "sloppy" one

dimensional search achieves better overall results than a more exact one.

(3) The code was significantly simplified and shortened.

The current interpolation strategy is simply to bracket the minimum, fit a

quadratic, choose the best of all points evaluated during the current search, and

return. Multiple interpolations are no longer performed. Choosing the best point

is necessary, because the D point selected by the quadratic interpolation (block 11,

DMINRG flow chart) may not be the best, and choosing it can yield a final objective

value worse than the value at the start of the search.

Two new checks have been added to the quadratic interpolation. The first test

*requires that the product (A-B) * (B-C) * (C-A) exceed, in absolute value, a tolerence

1 EPSQ1, while the second requires that the three points (A,FA), (B,FB) and (C,FC)

enclose an area no less than a tolerence EPSQ2. These tests ensure that the quadratic

Iinterpolation is numerically stable, and no interpolation is performed if either of thl
fails.

37

Subroutine REDOBJ

e ':t The actions taken when NEWTON does not converge (see pages 1 and 3 of the flow[I chart) are new. In the current logic, if NEWTON does not converge then either the

best point found so far is accepted as the minimum and the one dimensional search

i terminated or, if no such point has been found, the objective value at the current

30point is set to 10 in order to force the step size to be cut back in DMINRG.

Previous logic tried to force convergence by first computing an approximate B arid,

if that also failed, then an exact B- , both evaluated at the last feasible point.

The approximate B was a dismal failure, and even the exact one often would not cause

Newton to converge. Further, when convergence of Newton did ensue, many iterations

were usually required and, of course, evaluating B involves a significant amount

of computation. Computational results (see section 7) show a significant improvement

with the new logic. Evidently, once the radius of convergence of Newtons method (with

B1 evaluated at a = 0) has been reached, it is not worthwhile to try to extend it. In

fact, it had proved worthwhile to limit motion from a = 0 to those a values which

require only a few Newton iterations (fewer than 6, for example) for convergence.

This is accomplished by the test in block 7, page 2 of the DMINRG flow chart.

Additional advantages of this new logic are (1) it is much simpler and (2)

only one evaluation of B is required per one dimensional search. This latter

feature is especially important for large problems, where evaluating B will be one

of the major computational steps.

Subroutine REDOBJ now includes logic to deal with basic variables which violate

their bounds. This permitted the elimination of subroutine BSCHNG of reference (1],

and hence shorted the code.

The logic in blocks 6 and 11 on page 2 was added as part of the changes required

to solve problems for which the initial solution was not feasible i.e. a Phase I to

determine an initial feasible solution. These blocks deal with constraints which

had previously violated an upper (lower) bound and now, because too large a step has

been taken, violate their lower (upper) bounds.

7

38

The logic on page 4, block 15, which stores the point with lowest objective

value, is also new. This causes each one dimensional search to yield a point no

worse than the one it starts with. This logic was added because the last point

obtained by DMINRG is not always the best, especially when it is obtained by

I interpolation. This may be due to the inacurracy with which F(x) is obtained;

interpolation seems to produce poorer results as EPNEWT is increased. Without this

I logic, function values obtained at the end of successive DMINRG calls sometimes

increased, especially near the minimum and with larger values of EPNEWT. One consequen

of this was that many iterations could take place without the objective improving

Tand without thc stop criteria in subroutine GRG being met. The new logic eliminates

this problem.

Subroutine CONSBS

- The only major change from the previous version is in the way degeneracy is handle

In block 13, p. 2 of the CONSBS flow chart, the N branch is taken when an acceptable

pivot element cannot be found in mode 2. The old code simply printed an error

message and stopped. The present code branches to page 4 of the flow chart, which

enters a variable at its bound into the basis. This is an improvement, but the logic

* is still not s,..Isfactory. Future plans for dealing with degeneracy are discussed

in section 8.

A

I

mi 39

It

7. Computational Results

(a) Comparison with Previous GRG Code

I The changes described in section 6 have both simplified the code and improved

its efficiency. Table 1 below gives problem characteristics of eight test problems,

while table 2 gives comparative results using the new GRG logic and the old described

in reference [I] and section 6. While the number of one dimensional searches has

increased slightly, the other 3 performance measures are significantly improved.

Prob- NAME OF NO. 0F NO. OF NO. OF
lem VARIABLES EQUALITY INEQUALITY
No. PROBLEM CONSTRAINTS CONSTRAINTS

• 1. Kowalik- 4 0 3
Osborne
Quadratic

- 2. Colvil. 5 0 3
Quadratc

3. Asaadi Problem 5 3 0
No. 4

4. Eight Variable 8 0 23
"" Spring

5. R.A.C. Shell 15 0 5
*Dual

6. Seven Variable 17 10 8
Truss

7. RAC Primal 5 0 10

8. GGP Alklya- 7 0 14
tion

TABLE 1 - Characteristics of Test ProblemsI
_ _ _ _

40

S PROBLEM 1 2 3 4 5 6 TOTALS
STATISTIC OLD NEW OLD NEW - OLD NEW OLD NEW OLD NEW OLD NAW OLD NEW

One Dim-
ensional 8 8 5 5 6 9 8 12 31 30 10 11 68 75
Searches

'k- Newton 135 56 8 9 519 110 87 48 543 412 87 78 1379 813
a Iterations

Equivalent
Function 283 143 55 48 724 199 234 199 1299 1000 324 208 2874 1797
Calls -

BINV
Computa- 15 8 6 5 35 9 15 12 44 30 11 1 126 85

L tiorns

1 TABLE 2 - Results of New Logic

* Equivalent Function Calls Functions Calls + N. Gr,,dient Calls
where N = No. of variablis.

7

41

(b) Compariaon with Penalty Methods.

The same seven test problems were run on the current GRG code as well as on

the interior penalty code described in [11]. GRG required far fewer on dimensional

I searches, function evaluations and .gradient evaluations. While some of this reduction

was offset by the requirement of matrix inversion and solution of nonlinear equations

in GRG, it was noted that GRG produced more accurate solutions for most of the problems.

3Differences in computation times (of the order of hundredths of a second) could not be

estimated accurately owing to the masking effects of mutiprogramming. We expect

that GRG will prove superior to penalty methods for large problems where linear

programming technology can be implemented very effectively. The comparative

,6 performance of GRG and the penalty codes is shown in Table 3

TOTALS - PROBLEMS 1,2,4-8
STATISTIC REDUCTION FACTOR

PENALTY GRG PENALTY/GRG

One Dimensional 495 94 5.3
Searches

Function Calls 3773 1125 3.4

Gradient Calls 539 99 5.4

Equivalent 8645 2023 4.5
Function Calls

Newton
Iterations 747

BINV
Computations 94

Table 3 - Comparison of GRG and Interior Penalty Codes.

1:

442

8. Future Work

r" a. Degeneracy

I l A feasible point is degenerate if the gradients of the binding

constraints (including bounds on the variables) are dependent. Hence, a

point with more than N constraints binding is always degenerate. At a

degenerate point, any basis matrix must include at least one column

corresponding to a variable at one of its bounds. This may be a slack

variable or one of the natural variables. As one attempts to move away

from a degenerate point, it may be that one or more of the basic variables

at a bound immediately violates that bound. Then either the basis must

be changed or a new search direction selected. We have encountered 3

. degenerate points in the dozen or so problems solved thus far. The current

logic for dealing with degeneracy is unsatisfactory. Work in the coming

year will aim at remedying these defects.

b. Extrapolation of Basic Variables

Within a given one dimensional search, each basic variable, yi, is

a function of the step size a, y Y (a). At a = 0 we know y1 (0) and

! (0) = Vi, where Vi is the i
th component of the tangent vector V. At

a = B we compute yi(B). Given this information, a quadratic can be fit

to yi(O), Y'(O), yi(B) and used to estimate yi(C). These estimates are

used as initial values in the Newton iteration which evaluates yi(C).

Then a quadratic can be fit thru yi(0), yi(B), yi(C). This is used to

estimate y at the next a value, and so on. At each stage, we have a
IS

quadratic approximation to the curve y(a) on the constraint surface. These

approximations should be much better than the current linear approximation,

-which always uses the tangent vector V evaluated at a = 0. Computational

F' 43

experiments to measure the improvement yielded by these
moving quadratic

I iextrapolations will be carried out in the coming year.
c. Conjugate Gradient Algorithm

- We have changed from the M to the BFS variable metric algorithm,

I due to recent work by Shanno [9, 10,1 showing it to be superior. However,

all variable metric algorithms require storage and updating
of an N by N

I
I H matrix which is not sparse. Hence there is no way they can be used in

I a GRG algorithm that is to solve large problems. The only alternative

algorithm that requires no H matrix and converges
finitely on quadratic

I functions is the Conjugate Gradient (CG) algorithm [12]. We plan to

implement a version of GRG employing CG and compare
its performance with

that of the BFS procedure. CG should permit solution of problems with 100

-- constraints and two to three hundred variables in an explicit
inverse GRG

code which does not exploit sparsity.

d. Solution of Geometric Programs

Geometric programs (GP) have constraint and objective functions

of the form
n

gk (X) k ci ti X)
~i~nk_ 1

*where the terms ti are given by
N

ti(X) = IXaIJ! j=l j

The exponents aij are arbitrary real numbers. Such problems have received
much

attention in the literature, and special algorithms based on the dual GP have

been developed to solve them. These algorithms arc not completely satisfa-tory,

however, due to ill-conditioning

!| 44|

I o of the dual objective function [14]. We intend to solve a number of

geometric programs using GRG and compare the results with those obtained

by other researchers with whom we are in correspondence. Our GRG code

will be specialized to the GP structure by adding a "front end" module.

This will permit input of the GP by specifying the indices nk, constants

ci, and exponent matrix aij. It will also compute derivatives of the

functions gk as the terms ti are evaluated. This will speed computation

I significantly, and will yield the accuracy of analytic derivatives without

any user-supplied PARSH subroutine.

e. A GRG Code for Large Problems

One of the most attractive features of GRG is that it is able to

accommodate large problems (1000 or more constraints and many more variables)

-by incorporation of techniques which exploit sparsity. These techniques

are extensively used in modern linear programming codes. A long

-- range (2 - 3 years) goal of this research is the development of a large

scale GRG code and its comparison with current codes for solving large

NLP's, e.g. approximation programming codes [13]

45

References

1 1. L.S. Lasdon, R. Fox and M. Ratner, "Nonlinear Optimization Using the Generalized
Reduced Gradient Method" Tech. Memo. No. 325, Department of Operations Research, Case
Western Reserve University, October 1973.

2. J. Abadie and J. Carpentier, "Generalization of the Wolfe Reduced Gradient Method
to the Case of Nonlinear Constraints" in Optimization, R. Fletcher, Ed., Academic Press,
1969, pp. 37-47

3. J. Abadie, "Application of the GRG Algorithm to Optimal Control Problems" in
Nonlinear and Integer Programming, J. Abadie, Ed., North Holland Publishing Co., 1972,

5' pp. 191-211.

4. J. Hartman,-"Some Experiments in Global Optimization" Technical Memorandum No.I NPS55HH72051A, United States Naval Postgraduate School, Monterey, California, May 1972.

5. D. Goldfarb, "Extension of Davidons Variable Metric Method to Maximization Underi Linear Inequality and Equality Constraints", SIt.1 J. Appl. Math., Vol. 17, No. 4,
July 1969.

T 6. R. Fletcher and M.J.D. Powell, "Rapidly convergent Descent Method for
Mimimization", Comp. J., vol. 6, p.163 (1963)

- 7. L.S. Lasdon, "Optimization Theory for Large Systems", Macmillan, New York, 1970,
pp. 73-83

8. R. Fletcher, "A New Approach to Variable Metric Algorithms", Computer Journal,

Vol. 13, 1970, pp. 317 - 322

9. D.F. Shanno and K.H. Phua, "Inexact Step Lengths and Quasi Newton Mehtods", working
paper, University of Toronto, 1974.

10. D.F. Shanno, A. Berg and G. Cheston, "Restarts and Rotations of quasi - Ne.Jton
Methods", in Information Processing 74, North Holland Publishing Co., 1974 pp. 557 - 561.

S11. R.L. Fox, L.S. Lasdon, A. Tamir, and M. Ratner, "An Efficient One Dimensional
Search.Procedure", Management Science, to appear

12. R. Fletcher and C.M. Reeves, "Function Minimization by Conjugate Gradients",
British Computer Journal, Vol. 7, 1964, pp.1 49 - 154.

13. R.E. Griffith and R.A, Stewart, "A Nonlinear Programming Technique for the
Optimization of Continuous Processing Systems", Management Science, Vol. 7, 1961 pp.
379 - 392.

14. Kochenberger, G.A, et. al., "On the Solution of Geometric Programs via Separable
Programming", Operational Res. Quarterly, 24(2), 1973

